Blogia

electro-cev

Tiristor

El tiristor (gr.: puerta) es un componente electrónico constituido por elementos semiconductores que utiliza realimentación interna para producir una conmutación. Los materiales de los que se compone son de tipo semiconductor, es decir, dependiendo de la temperatura a la que se encuentren pueden funcionar como aislantes o como conductores. Son dispositivos unidireccionales porque solamente transmiten la corriente en una única dirección. Se emplea generalmente para el control de potencia eléctrica.

El dispositivo consta de un ánodo y un cátodo, donde las uniones son de tipo PNPN entre los mismos. Por tanto se puede modelar como 2 transistores típicos PNP y NPN, por eso se dice también que el tiristor funciona con tensión realimentada. Se crean así 3 uniones (denominadas J1, J2, J3 respectivamente), el terminal de puerta está conectado a la unión J2 (unión NP).

Algunas fuentes definen como sinónimos al tiristor y al rectificador controlado de silicio (SCR);[1] otras definen al SCR como un tipo de tiristor, a la par que los dispositivos DIAC y TRIAC.

Este elemento fue desarrollado por ingenieros de General Electric en los años 1960. Aunque un origen más remoto de este dispositivo lo encontramos en el SCR creado por William Shockley (premio Nobel de física en 1956) en 1950, el cual fue defendido y desarrollado en los laboratorios Bell en 1956. Gordon Hall lideró el desarrollo en Morgan Stanley para su posterior comercialización por G.E.'s Frank W. "Bill"

Archivo:Thyristor circuit symbol.svg

El transistor bipolar frente a la válvula termoiónica

El transistor bipolar frente a la válvula termoiónica

Véanse también: Válvula termoiónica y Transistor bipolar

Antes de la aparición del transistor los ingenieros utilizaban elementos activos llamados válvulas termoiónicas. Las válvulas tienen características eléctricas similares a la de los transistores de efecto de campo (FET): la corriente que los atraviesa depende de la tensión en el borne de comando, llamado rejilla. Las razones por las que el transistor reemplazó a la válvula termoiónica son varias:

  • Las válvulas necesitan tensiones muy altas, del orden de las centenas de voltios, que son letales para el ser humano.
  • Las válvulas consumen mucha energía, lo que las vuelve particularmente poco útiles para el uso con baterías.
  • Probablemente, uno de los problemas más importantes haya sido el peso. El chasis necesario para alojar las válvulas y los transformadores requeridos para su funcionamiento sumaban un peso importante, que iba desde algunos kilos a decenas de kilos.
  • El tiempo medio entre fallas de las válvulas termoiónicas es muy corto comparado con el de los transistores, sobre todo a causa del calor generado.
  • Las válvulas presentan una cierta demora en comenzar a funcionar, ya que necesitan estar calientes para establecer la conducción.
  • El transistor es intrínsecamente insensible al efecto microfónico, muy frecuente en las válvulas.
  • Los transistores son más pequeños que las válvulas, incluso que los nuvistores. Aunque existe unanimidad sobre este punto, conviene hacer una salvedad: en el caso de dispositivos de potencia, estos deben llevar un disipador, de modo que el tamaño que se ha de considerar es el del dispositivo (válvula o transistor) más el del disipador. Como las válvulas pueden funcionar a temperaturas más elevadas, la eficiencia del disipador es mayor en ellas que en los transistores, con lo que basta un disipador mucho más pequeño.
  • Los transistores trabajan con impedancias bajas, o sea con tensiones reducidas y corrientes altas; mientras que las válvulas presentan impedancias elevadas y por lo tanto trabajan con altas tensiones pequeñas corrientes.
  • Finalmente, el costo de los transistores no solamente era muy inferior, sino que contaba con la promesa de que continuaría bajando (como de hecho ocurrió) con suficiente investigación y desarrollo.

Como ejemplo de todos estos inconvenientes se puede citar a la primera computadora digital, llamada ENIAC. Era un equipo que pesaba más de treinta toneladas y consumía 200 kilovatios, suficientes para alimentar una pequeña ciudad. Tenía alrededor de 18.000 válvulas, de las cuales algunas se quemaban cada día, necesitando una logística y una organización importantes.

Cuando el transistor bipolar fue inventado en 1947, fue considerado una revolución. Pequeño, rápido, fiable, poco costoso, sobrio en sus necesidades de energía, reemplazó progresivamente a la válvula termoiónica durante la década de 1950, pero no del todo. En efecto, durante los años 1960, algunos fabricantes siguieron utilizando válvulas termoiónicas en equipos de radio de gama alta, como Collins y Drake; luego el transistor desplazó a la válvula de los transmisores pero no del todo de los amplificadores de radiofrecuencia. Otros fabricantes, de equipo de audio esta vez, como Fender, siguieron utilizando válvulas en amplificadores de audio para guitarras. Las razones de la supervivencia de las válvulas termoiónicas son varias:

  • El transistor no tiene las características de linealidad a alta potencia de la válvula termoiónica, por lo que no pudo reemplazarla en los amplificadores de transmisión de radio profesionales y de radioaficionados.
  • Los armónicos introducidos por la no-linealidad de las válvulas resultan agradables al oído humano (véase psicoacústica), por lo que son preferidos por los audiófilos
  • El transistor es muy sensible a los efectos electromagnéticos de las explosiones nucleares, por lo que se siguieron utilizando válvulas termoiónicas en algunos sistemas de control-comando de cazas de fabricación soviética.

Base común

Base común

La señal se aplica al emisor del transistor y se extrae por el colector. la base se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganancia sólo de tensión. La impedancia de entrada es baja y la ganancia de corriente algo menor que uno, debido a que parte de la corriente de emisor sale por la base. Si añadimos una resistencia de emisor, que puede ser la propia impedancia de salida de la fuente de señal, un análisis similar al realizado en el caso de emisor común, nos da la ganancia aproximada siguiente: G_V=frac {R_C}{R_E}.

La base común se suele utilizar para adaptar fuentes de señal de baja impedancia de salida como, por ejemplo, micrófonos dinámicos.NPN.

Archivo:NPN common base.svg

 

Colector común

Colector común.

La señal se aplica a la base del transistor y se extrae por el emisor. El colector se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganancia de corriente, pero no de tensión que es ligeramente inferior a la unidad. Esta configuración multiplica la impedancia de salida por 1/β.

 

Transistor de contacto puntual

Transistor de contacto puntual

Llamado también transistor de punta de contacto, fue el primer transistor capaz de obtener ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio, semiconductor para entonces mejor conocido que la combinación cobre-óxido de cobre, sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de base es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.

Transistor de unión bipolar

El transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.

La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o "huecos" (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).

La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor está mucho más contaminado que el colector).

El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.

Transistor de unión unipolar

También llamado de efecto de campo de unión (JFET), fue el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contactos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando a puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.

Transistor de efecto de campo

El transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.

  • Transistor de efecto de campo de unión, JFET, construido mediante una unión PN.
  • Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un dieléctrico.
  • Transistor de efecto de campo MOS, MOSFET, donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.

transistor

Transistor

Distintos encapsulados de transistores.
Entramado de transistores.
Entramado de transistores representando 0xA o 10 en decimal.

El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los aparatos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, teléfonos móviles, etc.

El transistor bipolar fue inventado en los Laboratorios Bell de EE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y William Bradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956. Fue el sustituto de la válvula termoiónica de tres electrodos, o triodo.

Si bien el transistor de efecto de campo fue descubierto antes que el transistor (1930), pero como no se encontró una aplicación útil ni se disponía de la tecnología necesaria para fabricarlos masivamente.

Es por ello que al principio se usaron transistores bipolares y luego los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre el surtidor o fuente (source) y el drenaje (drain) se controla mediante el campo eléctrico establecido en el canal. Por último, apareció el MOSFET (transistor FET de tipo Metal-Óxido-Semiconductor). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (CI).

Hoy la mayoría de los circuitos se construyen con tecnología CMOS. La tecnología CMOS (Complementary MOS ó MOS Complementario) es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga.

El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.

De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de colector y corriente de base, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas(configuraciones) básicos para utilización analógica de los transistores son emisor común, colector común y base común.

Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control (graduador) y gradúa la conductancia del canal entre los terminales de Fuente y Drenaje. Cuando la conductancia es nula y el canal se encuentra estrangulado, por efecto de la tensión aplicada entre Compuerta y Fuente, es el campo eléctrico presente en el canal el responsable de impulsar los electrones desde la fuente al drenaje. De este modo, la corriente de salida en la carga conectada al Drenaje (D) será función amplificada de la Tensión presente entre la Compuerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Compuerta, Drenador y Fuente son Reja (o Grilla Control), Placa y Cátodo.

Los transistores de efecto de campo, son los que han permitido la integración a gran escala disponible hoy en día, para tener una idea aproximada pueden fabricarse varios cientos de miles de transistores interconectados, por centímetro cuadrado y en varias capas superpuestas.

Componentes semiconductores

También denominados como componentes de estado sólido, son los componentes "estrella" en casi todos los circuitos electrónicos. Se obtienen a partir de materiales semiconductores, especialmente del silicio(0.6) aunque para determinadas aplicaciones aún se usa germanio(0.2)

Componentes activos

Los componentes activos son aquellos que son capaces de excitar los circuitos o de realizar ganancias o control del mismo. Fundamentalmente son los generadores eléctricos y ciertos componentes semiconductores. Estos últimos, en general, tienen un comportamiento no lineal, esto es, la relación entre la tensión aplicada y la corriente demandada no es lineal.

Los componentes activos semiconductores derivan del diodo de Fleming y del triodo de Lee de Forest. En una primera generación aparecieron las válvulas que permitieron el desarrollo de aparatos electrónicos como la radio o la televisión. Posteriormente, en una segunda generación, aparecerían los semiconductores que más tarde darían paso a los circuitos integrados (tercera generación) cuya máxima expresión se encuentra en los circuitos programables (microprocesador y microcontrolador) que pueden ser considerados como componentes, aunque en realidad sean circuitos que llevan integrados millones de componentes.

En la actualidad existe un número elevado de componentes activos, siendo usual, que un sistema electrónico se diseñe a partir de uno o varios componentes activos cuyas características lo condicionará. Esto no sucede con los componentes pasivos. En la siguiente tabla se muestran los principales componentes activos junto a su función más común dentro de un circuito.

ComponenteFunción más común
Amplificador operacionalAmplificación, regulación, conversión de señal, conmutación.
BiestableControl de sistemas secuenciales.
PLDControl de sistemas digitales.
DiacControl de potencia.
DiodoRectificación de señales, regulación, multiplicador de tensión.
Diodo ZenerRegulación de tensiones.
FPGAControl de sistemas digitales.
MemoriaAlmacenamiento digital de datos.
MicroprocesadorControl de sistemas digitales.
MicrocontroladorControl de sistemas digitales.
PilaGeneración de energía eléctrica.
TiristorControl de potencia.
Puerta lógicaControl de sistemas combinacionales.
TransistorAmplificación, conmutación.
TriacControl de potencia.

 Componentes pasivos

Son aquellos que no necesitan una fuente de energía para su funcionamiento. No tienen la capacidad de controlar la corriente en un circuito.

Los componentes pasivos se dividen en :


Componentes Pasivos Lineales:

ComponenteFunción más común
CondensadorAlmacenamiento de energía, filtrado, adaptación impedancia.
Inductor o BobinaAlmacenar o atenuar el cambio de energía debido a su poder de autoinducción.
Resistor o ResistenciaDivisión de intensidad o tensión, limitación de intensidad.

 

Componente electrónico y

Se denomina componente electrónico a aquel dispositivo que forma parte de un circuito electrónico. Se suele encapsular, generalmente en un material cerámico, metálico o plástico, y terminar en dos o más terminales o patillas metálicas. Se diseñan para ser conectados entre ellos, normalmente mediante soldadura, a un circuito impreso, para formar el mencionado circuito.

Hay que diferenciar entre componentes y elementos. Los componentes son dispositivos físicos, mientras que los elementos son modelos o abstracciones idealizadas que constituyen la base para el estudio teórico de los mencionados componentes. Así, los componentes aparecen en un listado de dispositivos que forman un circuito, mientras que los elementos aparecen en los desarrollos matemáticos de la teoría de circuitos.

 

De acuerdo con el criterio que se elija podemos obtener distintas clasificaciones. Seguidamente se detallan las comúnmente más aceptadas.

1. Según su estructura física
  • Discretos: son aquellos que están encapsulados uno a uno, como es el caso de los resistores, condensadores, diodos, transistores, etc.
  • Integrados: forman conjuntos más complejos, como por ejemplo un amplificador operacional o una puerta lógica, que pueden contener desde unos pocos componentes discretos hasta millones de ellos. Son los denominados circuitos integrados.
2. Según el material base de fabricación.
  • Semiconductores (ver listado).
  • No semiconductores.
3. Según su funcionamiento.
  • Activos: proporcionan excitación eléctrica, ganancia o control (ver listado).
  • Pasivos: son los encargados de la conexión entre los diferentes componentes activos, asegurando la transmisión de las señales eléctricas o modificando su nivel (ver listado).
4. Según el tipo energía.
  • Electromagnéticos: aquellos que aprovechan las propiedades electromagnéticas de los materiales (fundamentalmente transformadores e inductores).
  • Electroacústicos: transforman la energía acústica en eléctrica y viceversa (micrófonos, altavoces, bocinas, auriculares, etc.).
  • Optoelectrónicos:transforman la energía luminosa en eléctrica y viceversa (diodos LED, células fotoeléctricas, etc.).

Se denomina componente electrónico a aquel dispositivo que forma parte de un circuito electrónico. Se suele encapsular, generalmente en un material cerámico, metálico o plástico, y terminar en dos o más terminales o patillas metálicas. Se diseñan para ser conectados entre ellos, normalmente mediante soldadura, a un circuito impreso, para formar el mencionado circuito.

Hay que diferenciar entre componentes y elementos. Los componentes son dispositivos físicos, mientras que los elementos son modelos o abstracciones idealizadas que constituyen la base para el estudio teórico de los mencionados componentes. Así, los componentes aparecen en un listado de dispositivos que forman un circuito, mientras que los elementos aparecen en los desarrollos matemáticos de la teoría de circuitos.

 

De acuerdo con el criterio que se elija podemos obtener distintas clasificaciones. Seguidamente se detallan las comúnmente más aceptadas.

1. Según su estructura física
  • Discretos: son aquellos que están encapsulados uno a uno, como es el caso de los resistores, condensadores, diodos, transistores, etc.
  • Integrados: forman conjuntos más complejos, como por ejemplo un amplificador operacional o una puerta lógica, que pueden contener desde unos pocos componentes discretos hasta millones de ellos. Son los denominados circuitos integrados.
2. Según el material base de fabricación.
  • Semiconductores (ver listado).
  • No semiconductores.
3. Según su funcionamiento.
  • Activos: proporcionan excitación eléctrica, ganancia o control (ver listado).
  • Pasivos: son los encargados de la conexión entre los diferentes componentes activos, asegurando la transmisión de las señales eléctricas o modificando su nivel (ver listado).
4. Según el tipo energía.
  • Electromagnéticos: aquellos que aprovechan las propiedades electromagnéticas de los materiales (fundamentalmente transformadores e inductores).
  • Electroacústicos: transforman la energía acústica en eléctrica y viceversa (micrófonos, altavoces, bocinas, auriculares, etc.).
  • Optoelectrónicos:transforman la energía luminosa en eléctrica y viceversa (diodos LED, células fotoeléctricas, etc.).
  • Archivo:Componentes.JPG

Circuito en serie y circuito paralelo

 

Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida de un dispositivo se conecta a la terminal de entrada del dispositivo siguiente.

Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.

En función de los dispositivos conectados en serie, el valor total o equivalente se obtiene con las siguientes expresiones:

  • Para generadores
Componente 07.svgComponente 07.svgComponente 07.svg
{V_{T}} = {V_1} + {V_2} + ... + {V_n},
{I_{T}} = {I_1} = {I_2} = ... = {I_n},
  • Para Resistencias
Componente 01.svgComponente 01.svgComponente 01.svg

 

 

  • Para Condensadores
Componente 04.svgComponente 04.svgComponente 04.svg
{1 over C_{T}} = {1 over C_1} + {1 over C_2} + ... + {1 over C_n},


  • Para Interruptores
Interu 01.svgInteru 01.svgInteru 01.svg
Interruptor 1Interruptor 2Salida
AbiertoAbiertoAbierto
AbiertoCerradoAbierto
CerradoAbiertoAbierto
CerradoCerradoCerrado


Circuito en paralelo

De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

El circuito en paralelo es una conexión donde los bornes o terminales de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.

Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo.

En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones:

 

  • Para generadores
Interu 12.svgComponente 07.svgInteru 15.svg
Interu 14.svgComponente 07.svgInteru 17.svg
Interu 20.svgComponente 07.svgInteru 20.svg
{V_{T}} = {V_1} = {V_2} = ... = {V_n},
{I_{T}} = {I_1} + {I_2} + ... + {I_n},


  • Para Resistencias
Interu 12.svgComponente 01.svgInteru 15.svg
Interu 14.svgComponente 01.svgInteru 17.svg
Interu 20.svgComponente 01.svgInteru 20.svg
{1 over R_{T}} = {1 over R_1} + {1 over R_2} + ... + {1 over R_n},


  • Para Condensadores
Interu 12.svgComponente 04.svgInteru 15.svg
Interu 14.svgComponente 04.svgInteru 17.svg
Interu 20.svgComponente 04.svgInteru 20.svg
{C_{T}} = {C_1} + {C_2} + ... + {C_n},


  • Para Interruptores
Interu 12.svgInteru 01.svgInteru 15.svg
Interu 14.svgInteru 01.svgInteru 17.svg
Interu 20.svgInteru 01.svgInteru 20.svg
Interruptor 1Interruptor 2Salida
AbiertoAbiertoAbierto
AbiertoCerradoCerrado
CerradoAbiertoCerrado
CerradoCerradoCerrado